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Chapter 17

MAGNETIC INDUCTION

An aluminum dish is gently positioned over a coil through
which runs a large AC current.  As a consequence, the dish
levitates six inches above the coil.  A raw egg is cracked with its
contents deposited onto the plate.  The egg begins to fry.  What's
going on? . . . It's all about the wild world of magnetic induction.

A.)  Magnetic Flux:

1.)  Before we can start talking
about Faraday's Law and induction, there
is a mathematical contrivance we need to
discuss.  It is called magnetic flux.

2.)  If a magnetic field B passes
through the face of a coil of area A (see
Figure 17.1), it will generate what is called
a magnetic flux φ m through the coil.  The

amount of flux is dependent upon several
parameters:

a.)  The area A of the coil's face

FIGURE 17.2
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(as used here, "face" is defined as the
cross sectional area of the coil--the
larger the face, the more field lines
can pass through),

b.)  The magnitude of the mag-
netic field (it should be obvious that
the larger the field, the more field
lines will pass through a given face
area), and
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FIGURE 17.3

B-field
   (parallel
      to  coil)

coil (looking
   down from above)

FIGURE 17.5

o

B-field

30
coil
   (from
   above)

FIGURE 17.4
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c.)  Figures 17.1, 17.2, and 17.3 show
three different angular relationships
between the coil's orientation and the
direction of the magnetic field.

d.)  Bottom line:  When the coil is
positioned as in Figure 17.1, there is more
magnetic flux passing through its face than is the case in Figure 17.2.
Notice also that there is no magnetic flux through the coil in Figure 17.3.

e.)  This angular variation is taken into account
in the following way:

i.)  Define a vector A whose magnitude is the
area of the coil's face and whose direction is
perpendicularly out from the face (see Figure
17.4).  With A so defined (note: this variable is
sometimes denoted as S, standing for surface
area--we will use both notations), the magnetic
flux through the coil's face is:

      φm = B.A.

f.)  Example of a simple flux calculation:  Determine
the  magnetic flux through the coil depicted in Figure 17.5
(the sketch shows a circular coil FROM ABOVE).  Assume
that the magnetic field intensity is .02 teslas, the coil's
radius is .3 meters, and the angle between the hoop itself

and the magnetic field is 30o (see sketch).

i.)  To begin with, notice that the magnitude of the
area of the coil's face is:

FIGURE 17.6

B
   angle between
vectors A and B
is sixty degrees

A

coil

    A =  r2,

while the angle θ  between A and B is 60o. . . that's

right, 60o!  The angle in this dot product is between
the line of B and the line of A, where A is a vector
PERPENDICULAR to the face of the coil (see
Figure 17.6).
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FIGURE 17.7
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ii.)  Using our definition for flux:

         Fm = B.A

       =      B                 A            cos θ

       = (.02 T)  [() (.3 m)2]  cos (60o)

       = 2.83x10-3 tesla.meters.

Note:  The unit tesla.meters is given a special name--the weber.  That means
the units for a magnetic field could be written as webers per meter.

B.)  Faraday's Law:

1.)  In 1831, Michael Faraday noticed an interesting phenomenon.  The fol-
lowing scenario and commentary highlight his observations.

a.)   Attach a coil to a galvanometer.  There will be no current flowing in
the coil because there is no power being provided to the coil.

b.)  Put the coil in a constant magnetic
field (Figure 17.7).  There will be a magnetic
flux through the coil, but there will still be
no current in the coil--there will still be no
power being supplied to the wire loop.

c.)  Change the magnetic flux by either:

i.)  Changing the magnetic field
strength,

ii.)  Changing the area of the coil's
face (i.e., somehow changing the coil's radius),

iii.)  Changing the orientation of the coil relative to the magnetic field
(i.e., changing the angle θ  in the dot product B.A), or

iv.)  Some combination thereof.
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d.)  Observation:  Even though there is no standard power supply in the
circuit, as the magnetic flux changes--and ONLY while the flux changes--a
current in the coil will be registered by the galvanometer.

2.)  There are many ways we can explain this.  From the point of view of the
free charge in the wire, decreasing the magnetic field (hence, decreasing the
magnetic flux through the coil) is like moving from a region where the B-field is
bigger into a region where it is smaller.  Charges moving in a magnetic field feel a
magnetic force defined by qvxB, so free charges in the wire will feel a force that
makes them circulate through the coil.

What is important to note is that Faraday did not see the situation in these
terms.  His evaluation was as follows:

a.)  Observation 1: As is stated above, while the magnetic flux changes--
and only while the flux changes--a current in the coil is registered by the
galvanometer.  Therefore, a changing magnetic flux must induce an EMF
(this is like a voltage) in the coil which, in turn, generates current that lasts
as long as the flux continues to change.

Note:   Electromotive force (EMF) is the part of a power source that mo-
tivates charge to move--it is that part that actually puts energy into the system.  Its
units are volts.  You might wonder why this has a special definition.  In the past, we
have oversimplified the workings of power supplies.  A battery, for instance, has an
internal resistance r.  That means the battery heats up taking energy out of the
system when current is drawn from it (this internal voltage drop is equal to ir).  To
technically delineate between the battery's terminal voltage Vo (i.e., the voltage

measured across its terminals) and the actual charge-motivating character of the
battery, the concept of the electromotive force (EMF) was defined.  In a battery, the
EMF = Vo + ir.

The point is that Faraday alluded to a charge-motivating property that
seems to exist when a coil of wire is placed in a changing magnetic field.  As such,
he related charge flow to an induced EMF that, he reasoned, must exist if current
was to flow in the circuit.

b.)  Observation 2:  The induced EMF is related to the rate at which the
flux changes and the number of winds N in the coil.  That is, if you change the
flux slowly, you get a small induced EMF and a small induced current.  If you
change the flux quickly, you get a large induced EMF and a large induced
current.  Assuming the change is constant, the induced EMF becomes:
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induced EMF = −N

∆Φm

∆t
.

Note 1:  The negative sign in front of the expression will be explained later.

Note 2:  The symbol most often used for an EMF is ε .

c.)  If the flux-change is not constant, the induced EMF becomes:

  
induced EMF = −N

dΦm

dt
.

THIS IS IMPORTANT:  The easiest way to do most Faraday's Law
problems is to write out φ m as it exists at any arbitrary point in time, and

then take its time derivative.

d.)  Plugging in our defining expression for magnetic flux (i.e., φ m= B.A

=     B A cosθ ), we can rewrite Faraday's Law as:

  

induced EMF = −N
dΦm

dt

    ⇒    ε = −N
d BA cosθ( )

dt
.

In this expression, B is the magnetic field intensity, A is the area of the coil,
and θ  is the angle between the magnetic field vector B and the area vector
A (remember, the area vector is directed normal to the face of the coil), all
evaluated at an arbitrary point in time.

C.)  Direction of Induced Current--Lenz's Law:

1.)  So far, we have used Faraday's Law to determine the magnitude of the
induced EMF and current in a coil through which there is a changing magnetic flux.
What about current direction?

Lenz's Law provides a way to determine the direction of an induced current.
The approach is somewhat complex but certainly understandable if approached in
an orderly manner.  The best way to proceed is by looking at an example in pieces,
then by putting the pieces together.  Consider:
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a.)  A coil is placed in a constant external magnetic
field (see Figure 17.8).

b.)  As the external magnetic field passes through
the coil's face, there is a magnetic flux through the coil.

c.)  At this point, there is no current in the coil as
there is no changing flux through the coil.

d.)  Assume now that the external flux somehow increases through the coil.

Note:  As was said previously, this increase could come as a consequence of
an increase in the magnitude of the external B-field, an increase in the area of the
coil's face, a change in the angle between the area vector A and the magnetic field
vector B, or any combination thereof.

e.)  As there is now a changing flux through the coil,
there will be an induced EMF which, in turn, will cause an
induced current in the coil.  As we are not yet sure which
way the current will flow, assume its direction is as shown
in Figure 17.9.  If that is the case, the following will be
true:

i.)  The induced current will produce a magnetic
field of its own (this will be referred to as the induced
B-field).

ii.)  This field will set up a magnetic flux into the
page through the coil's face (this will be referred to
as the induced magnetic flux--see Figure 17.10).
Given the assumed current direction, that induced
flux will ADD to the increasing external flux
through the coil's face (i.e., the net flux through the
coil's face will be φ m,external+ φ m,induced).

iii.)  The logical consequences of this are as
follows:  As the induced flux adds to the increasing
external flux, the net flux change becomes bigger than it would have been.
As such, the induced current in the coil becomes bigger than it would
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have been which, in turn, creates an even bigger induced B-field through
the coil.  With the induced B-field larger than expected, the induced flux
becomes even GREATER, which means the net induced flux becomes
GREATER, which creates an EVEN BIGGER current in the coil, etc.,
etc., etc.

iv.)  Bottom line #1:  If, as the external flux increases, the induced
flux ADDS to it (i.e., helps the external flux out as it increases), the
consequence will be a runaway situation in which the conservation of
energy is wholly violated.

v.)  Bottom line #2:  The induced current must flow such that its
magnetic flux does NOT aid the external flux change.  In fact, the induced
magnetic flux must oppose that change.

vi.)  Note that the negative sign in ε  = -N (d φ m/dt).  It denotes that

the EMF is opposing the flux change.

2.)  Lenz's Law (as actually stated--not as is best applied):  When an
EXTERNAL magnetic flux CHANGES  through the face of a coil, an EMF is induced
in the coil.  That (induced) EMF generates an (induced) current which produces an
(induced) magnetic field through the coil's face, which produces an (induced) magnetic
flux through the coil's face, which is directed so as to OPPOSE THE CHANGE of the
external magnetic flux that started the whole process in the first place.

The right-thumb rule (thumb in direction of current--fingers curl in direction
of B through the coil) allows you to determine the direction of the required induced
current.  (SEE NEXT SECTION NOW!)

3.)  IMPORTANT--a SHORTCUT to using Lenz's Law (or, NO MATTER HOW
LITTLE THE ABOVE MADE SENSE, THE FOLLOWING WILL ALWAYS WORK!!!):

a.)  If the external flux INCREASES, no matter how this is ac-
complished, the direction of the INDUCED B-field through the coil's face
will always be OPPOSITE the direction of the external B-field.  If the
external flux DECREASES, the direction of the INDUCED B will be THE
SAME AS the direction of the external B-field.

b.)  ANOTHER CLEVER WAY TO GET THE INDUCED CURRENT'S
DIRECTION--or, the "other" right-thumb rule:  Determine the direction of the
induced B-field using the logic outlined in Part 3a.  Orient your right thumb
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FIGURE 17.12

over head view

B decreasing

FIGURE 17.11

front view

B  (out of page)
  increasing

along that line, pointing it through the coil.  Your fingers will curl in the
direction of the induced current in the loop.

4.)  Using Lenz's Law, determine the direction of the induced current in the
situations outlined below:

a.)  The external B-field in Figure 17.11 is in-
creasing out of the page, which means the external
flux is increasing.  The only way to oppose an increas-
ing magnetic flux is to produce a second magnetic flux
that subtracts from the original flux.  In other words,
we need a current that will produce a B-field in the di-
rection opposite the existing B-field, or into the page.

Using the "other" right-thumb rule:  Direct your
right thumb into the page and through the coil.  The

fingers of your right hand curl clockwise.  That's the direction of the induced
current.

over head view

coil rotates

FIGURE 17.13

b.)  The external B-field in Figure 17.12 is
decreasing.  The only way to oppose its decreasing
magnetic flux is to produce a second magnetic flux
that adds to the original flux.  In other words, we
need a current that will produce a B-field in the same
direction as the external B-field, or to the right.

Direct your right thumb to the right and through
the coil (you'll obviously have to visualize doing this--
the coil's face isn't actually shown).  Your right-hand
fingers will curl so that the induced current will flow toward the page's
bottom in the wire section shown.

c.)  Rotation as shown in Figure 17.13 depicts
a situation in which the external magnetic flux
through the coil's face is increasing.  The only way
to oppose an increase in magnetic flux is to
generate a magnetic flux that subtracts from the
existing flux.  In other words, we need a current
that will produce a B-field in the direction opposite
the external B-field, or to the left.

Direct your right thumb to the left and through
the coil (again, you'll have to visualize doing this as the coil's face isn't
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FIGURE 17.14
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FIGURE 17.15
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   flux maximum

FIGURE 17.16

B  (into
     page)

axis

actually shown).  Your right-hand fingers will curl so that the induced
current will flow toward the top of the  page in the wire section shown.

d.)  Rotation as shown in Figure 17.14 depicts a sit-
uation in which the external magnetic flux through the
coil's face is decreasing (the coil's magnetic flux is at a
maximum going down).  The only way to oppose a de-
crease in magnetic flux is to generate a magnetic flux
that adds to the existing flux.  In other words, we need a
current that will produce a B-field in the same direction
as the external B-field, or into the page.

Direct your right thumb into the page and through
the coil.  Your right-hand fingers will curl clockwise--
that's the induced current's direction.

e.)  As the area of the coil in Figure 17.15 becomes
smaller, the magnetic flux through the coil's face
decreases.  The only way to oppose a decrease in
magnetic flux is to generate a magnetic field that adds
to the existing field.  In other words, we need a current
that will produce a B-field in the same direction as the
external B-field.

Using the right-thumb rule, the current direction
that generates such a magnetic field through the coil's
face will be upward (toward the top of the page) in the
section of wire visible to us in the sketch.

D.)  The Production of AC--Alternating Current:

1.)  When a coil is placed in a magnetic field and
is rotated, a changing flux ∆ φ m will exist through the

coil that will produce an induced EMF across the coil's
leads.  A surprising result is found when Lenz's Law is
used to determine the direction of the induced current
and, hence, the high and low voltage side of the coil as
the coil rotates.  Follow along:

a.)  Assume the external magnetic field is
directed into the page and the coil is initially
facing the B-field (see Figure 17.16--note that
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FIGURE 17.17
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this side of the
coil is turning
           into the
                page

FIGURE 17.18

B  (into
     page)

lead A

flux increases in second quarter;
   induced B out of page;
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the right side of the coil--the part that will ini-
tially rotate into the page--is darker; this has
been done to make it easier to follow the coil

through the complete 360o rotation).  As the coil
begins to rotate, the external flux through the
coil's face diminishes (Figure 17.17).  The coil
generates an induced current which opposes the
decrease of flux, which means an induced B-field
is created into the page.  The direction of current
flow required to do this is clockwise, which means
lead A must be the positive side of the coil.

b.)  The coil rotates through the no-external-
flux position and into the second quarter of its
cycle (see Figure 17.18).  In this part of its motion,
the external flux is increasing.  The induced B-
field required to oppose this increase must be out
of the page, which requires an induced current
that is counterclockwise (relative to where we are
sitting).  As such, lead A must again be the
positive side of the coil.

c.)  The coil rotates through the maximum-
flux position and into the third quarter of its cycle
(Figure 17.19).  In this part of its motion, the
external flux is decreasing.  The induced B-field

FIGURE 17.19

B  (into
     page)

lead A

flux decreasing in third quarter;
   induced B into page;
      lead A negative

required to oppose this decrease must be into the
page, which requires a current that is clockwise
relative to ourselves.  As such, lead A must be
negative.

d.)  Lead A will be negative through the last
quarter of the rotation (just as in Part b above,
but with the lead positions switched).

e.)  Bottom line:  The high-voltage side of a
rotating coil alternates from one side to the other
as the coil turns.  This is how alternating current
(AC) is generated.
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FIGURE 17.21
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  for inductor

FIGURE 17.22
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FIGURE 17.23
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E.)  Induced EMFs in Coils:

1.)  The symbol for a coil in an
electrical circuit is shown in Figure
17.21 (yes, I know, there isn't a Figure
17.20--again, life's tough).  Coils are
called a number of different things:
chokes, solenoids, inductors.  The last
is the most common usage; the first is slang.

2.)  Consider the coil, resistor, switch, and DC
power supply in Figure 17.22.  At t = 0, the switch is
closed.  What will the current versus time graph look
like for this situation?

a.)  First, if the circuit were
comprised of nothing more than a
resistor across the power supply, the
voltage difference generated by the
power source would create an electric
field that would motivate all the free
charge-carriers in the circuit to move
at once.  Current in the circuit would
immediately be observed (the electric
field sets itself up at just under the
speed of light), its magnitude would
be Vo/R, and its current versus time

graph would be as shown in Figure
17.23.

b.)  With a coil in the circuit, everything changes.

i.)  To begin with, we know that when current moves through a coil it
creates a magnetic field down the coil's axis and a magnetic flux through
the coil's face.

ii.)  In the case cited above, there is no initial current in the coil, hence
no initial magnetic field or magnetic flux.  At t = 0, the switch is closed.
As current begins to flow, the magnetic flux through the coil begins to
INCREASE.
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FIGURE 17.24
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net
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opening and closing the switch in a DC
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FIGURE 17.25

open switch

close switch

iii.)  A changing magnetic flux induces an EMF (Faraday's Law) that
attempts to set up a B-field whose flux through the coil will oppose the
external flux-change that started the whole process.

iv.)  Put another way,
the sudden increase in
current elicits a back-
EMF that attempts to
diminish the current in-
crease through the coil.
This opposition is not so
large that it completely
stops current build-up,
but it does slow it down.
As such, the current in
the circuit increases more
slowly than would have
been expected, and the
current versus time graph
ends up looking like
Figure 17.24.

Note 1:  The current will sooner or later reach a maximum steady-state
value.  At that point, there will be no voltage drop across the coil except that
generated by the resistance inherent within the coil's wire.  As such, the current is
governed by Ohm's Law and equals Vo/Rnet.

Note 2:  Figure 17.25 shows the current versus time graph of an
inductor/resistor
circuit that is
continuously turning
on (i.e., the switch is
closed) and off (i.e.,
the switch is opened).
Just as the coil sets
up an EMF that
opposes an increase in
current when the
switch closes, so also
will it set up an EMF
that opposes a
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decrease in current when the switch opens. (Look at the graph!)

F.)  Inductance:

1.)  According to Faraday's Law, when the current through a coil changes, an
EMF is produced that works to oppose the change of the external flux.  Until now,
we have calculated EMFs using the relationship:

EMF = -N ( ∆φm)/( ∆ t).

The problem with this expression, at least when dealing with a coil in a real-life
situation, is convenience.  Flux is not a quantity we can easily measure with
normal laboratory equipment.

2.)  As it is the change of current in the coil that caused the change of flux, we
could link our induced EMF to the change of current instead of the flux change.
That is, we could define a proportionality constant L that allows us to relate the
induced EMF across the coil with the change of current in the coil.

Mathematically, this would look like:

      
  
EMF = −L

di
dt

.

3.)  The proportionality constant L is called the coil's inductance (you can
now see why a coil in an electrical circuit is usually called an inductor).  Its units
are henrys (it is not uncommon to find people laughing at inductors because of the
name of their units).  It's also not uncommon to find inductors in the milli-henry

range (a milli-henry is 10-3 H and is symbolized as mH).
Qualitatively, inductance tells us how large an induced EMF (in volts) we can

expect across the coils of an inductor per change of current per unit time.

4.)  Consider an electrical circuit in which there is an inductor whose
inductance is L, a resistor whose resistance is R, an ideal DC power supply, and a
switch (for now, we will assume that any resistance wrapped up in the wires
making up the coil is negligible).  Figure 17.24 shows the graph of current versus
time for this situation, assuming that the switch was closed at t = 0.

a.)  What function defines how the current will act with time in this
situation?  That is, what is i(t)?
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b.)  To determine this, we need to start with Kirchoff's Second Law and
write a loop equation for our circuit.  Doing so, then manipulating, yields:

c.)  What the differential equation is asking us to do is to find a current
i such that when you take its derivative di/dt and add it to a constant times
itself (R/L)i, you always get the same number (i.e., Vo/L).  I'm not going to

subject you to the pain of this derivation, but the bottom line--the current
function that does the job--turns out to be:

i = io(1 - e-(R/L)t).

d.)  What is interesting about this is that the time dependent ex-
pression for current in an RL circuit is similar to the charging function in an
RC circuit.  As was the case with capacitors, we can define a time constant
τ L for our circuit.  As before, one time constant will equal the amount of

time needed for e-Rt/L's exponent to numerically equal -1.  In our case, this
occurs when t = L/R.

i.)  The consequences of this can be seen by doing the math:
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ii.)  Knowing the time constant allows us to determine how fast the
current will rise or fall when a DC-driven RL circuit is turned on or off.
According to the math, after one time constant the current will be 63% of
its maximum (after two time constants, the current will be 87% of its
maximum).
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FIGURE 17.26
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Vo
R

(1 - e           )
-(R/L)t

iii.)  A graph of
the current
function and the
time constant is
shown in Figure
17.26.  Notice that
it is exactly the
graph we deduced
using hand-wav-
ing arguments in
previous sections.

G.)  Energy Stored in an Inductor:

1.)  To increase the current in a coil, extra work must be done to overpower
the coil's tendency to resist changes in its magnetic flux.  Where does that energy
go?  Some of it is stored in the inductor's magnetic field.  This section deals with
how much energy a current-carrying coil can store.

2.)  To determine the amount of energy wrapped up in an inductor's
magnetic field:

a.)  Reconsider Kirchoff's loop equation.  That is:

          
  
L

di
dt

+ iR = Vo .

Multiplying by i, we get:

     
  
iL

di
dt

+ i(iR) = iVo .

b.)  Noting that the iVo term equals the amount of power provided to

the circuit by the power supply, and the i2R term equals the amount of
power dissipated by the resistor, it's a good bet that the Li(di/dt) term
equals the amount of power dissipated by the inductor in the circuit.

The resistor pulls energy out of the circuit as heat.  The inductor pulls
energy out of the system by storing it in the coil's magnetic field.
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FIGURE 17.27

R
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V(t) = V   cos (2   t)o

As work per unit time (i.e., the power) equals dW/dt, we can write:

  

dW
dt

= Li
di
dt

,

or
  dW = Li(di).

Assuming we want to sum all the work done on the inductor between the
time the current is zero to the time it is at some maximum current io, we

can integrate both sides.  This will give us the total energy stored by the
inductor.  Doing so yields:

    

energy dW

Li di

Li

i

i

o

o

=

=

=

∫
∫ =

           

           

( )

.

0

21
2

Note:  The energy in an inductor is stored in a magnetic field governed by

current flow in the coil, and the energy expression is (1/2)Li2.  The energy in a
capacitor is stored in an electric field governed by a voltage across the capacitor's

plates, and the energy expression is (1/2)CV2.  Nice symmetry, eh?

H.)  Inductors in AC Circuits:

1.)  So far, all we have dealt with have been inductors as they act in DC
circuits.  Whenever the current attempts to change, they fight the change.

In AC circuits, inductors are constantly fighting a change.  This makes for
some very fun times.

2.)  Consider the RL circuit shown in Figure
17.27.

3.)  The inductor in the circuit will have a certain
amount of resistance rL inherent within the wires that

make up its coils.  That resistance will act like any
other resistor-like element in an AC circuit.
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FIGURE 17.28
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4.)  In addition to rL, the inductor also has a resistive nature that is

frequency-dependent.  Not obvious?  Follow along.

a.)  When an alternating current passes through an inductor, Faraday's
Law demands that an induced EMF be generated across the leads of the coil
that will ultimately produce an induced magnetic flux that opposes the
changing magnetic flux through the coil's face.  From the previous chapter,
the magnitude of this induced EMF equals:

εL = L (di/dt).

b.)  Writing a Loop Equation for an RL circuit
(see Figure 17.28 for the voltages associated with
each element), we get:

(- εL - ir) - iR + Vo cos (2 νt) = 0.

In this expression, ε L is the induced, frequency-

dependent voltage drop across the inductor (i.e., L
di/dt), 2 ν  is the angular frequency of the power
supply (a cosine function has been used to
characterize the varying voltage across the power supply--I've done this
because it will make life easier when we do the evaluation that is to follow--
we could as well have used a sine function, but the resulting expression
would have been a bit messy).  Substituting in and rearranging this
expression, we get:

               L (di/dt) + ir + iR = Vo cos (2 ν t).

c.)  The resistor-like resistance inherent in an inductor is sometimes
negligibly small and sometimes not.  For the sake of simplicity we will lump
it with R to get Rnet.  Doing so, the above expression becomes:

L (di/dt) + iRnet = Vo cos (2 νt).

d.)  Though you will never have to derive this on a test, we need an
expression for the resistive nature of the inductor excluding the resistor-like
resistance inherent within its wires.  To do this:
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i.)  Assume the resistance of (and, hence, voltage across) all of the
resistor-like elements in the circuit is negligible (i.e., that Rnet = 0).  In

that case, Kirchoff's Loop Equation becomes:

      L (di/dt)  = Vo cos (2 νt).

ii.)  We know the voltage across the power supply and inductor.  We'd
like an expression for the current through the circuit.  To determine this,
we need to manipulate and integrate.  Doing so yields:

    

L
di
dt

V t

Ldi V t dt

L di V t dt

Li V t

i
V t

L
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5.)  Important points:

a.)  Ohm's Law maintains that the current through an element must
equal the voltage across the element divided by a quantity that reflects the
resistive nature of the element.  In the above expression, the voltage across
the element is evidently Vo[sin(2 ν t)].  That means the resistive nature of

the inductor must be 2 ν L.

b.)  Even though inductors don't adhere to Ohm's Law (their current isn't
proportional to their voltage), this is, nevertheless, the frequency-dependent
resistive nature of an inductor.  It is called the inductive reactance, its
symbol is XL, and its units are ohms.  Summarizing, we can write:

     XL = 2 νL  (ohms),

where the inductance L must be written in terms of henrys (versus milli-
henrys or whatever).
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c.)  Although we assumed the resistor-like resistance of the circuit was
negligible to do the derivation, in fact this inductive reactance expression is
true whether the resistor-like resistance is big or small.

6.)  Side-Note:  Does the frequency-dependent expression for the resistive
nature of an inductor (i.e., its inductive reactance) make sense?

a.)  Consider a general RL circuit (i.e., one in which Rnet is not small)

hooked across an AC power supply that runs at low frequency.

Note:  A low frequency voltage means that although the amplitude of the
voltage of the power supply may be large or small, the rate at which the voltage
changes is very slow.

i.)  A low frequency voltage will produce a low frequency current.

ii.)  A low frequency current means that di/dt will be small (the
current is changing slowly if it is low frequency).

iii.)  A small di/dt means the induced voltage drop across the inductor
(Ldi/dt) is small.

iv.)  A small induced voltage drop across the inductor implies a
relatively large voltage drop across the resistor (at any instant, the two
have to add up to the voltage across the power supply--a quantity that
can be large).

v.)  As the voltage drop across a resistor is directly proportional to
the current through the resistor, a large voltage drop across the resistor
implies a relatively large current through the resistor and, hence,
through the circuit.

b.)  Bottom line #1:  The current in an RL circuit will be relatively large
when a low frequency signal passes through the circuit.  That means we
would expect the inductive reactance (the resistive nature of the inductor) to
be small at low frequencies.  This is exactly what our derived expression
predicts (i.e., when ν  is small, XL = 2 ν L is small).
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t

current in an AC circuit

t

      the inductor's voltage LEADS
the circuit's current by a quarter cycle

voltage across the inductor

FIGURE 17.30

(prop. to -  i/  t)V
L

  i/  t = "maximum" . . . this means
        the voltage  (-L   i/  t) is
  maximum at this point in time

   i/  t = 0 . . .  this means the
        voltage  (-L   i/  t)
 is zero at this point in time

FIGURE 17.29

c.)  Using similar reasoning, a power supply running at high frequency
creates a high frequency current that will produce a very large di/dt value.  In
such a case, the voltage drop across the inductor (L di/dt) is relatively large
and the voltage drop across the resistor is relatively small.  A small voltage
drop across the resistor suggests a small current flowing in the circuit.

d.)  Bottom line #2:  The current in an RL circuit will be relatively small
(i.e., approaching zero) when a high frequency signal passes through the
circuit.  That means we would expect the inductive reactance to be big at
high frequencies.  This is exactly what our expression predicts (i.e., when ν
is large, XL is large).

e.)  Summary:  An inductor in an AC circuit passes low frequency signals
while damping out high frequency signals.  As such, inductors are sometimes
referred to as low pass filters.

7.)  The second point to note about
Equation A again has to do with its form.  By
assuming a power supply voltage that is
proportional to cos (2 ν t), and assuming that
the net resistance in the circuit is zero (i.e., Rnet
= 0 so that the voltage across the inductor is the
same as that across the power supply), we find
that the circuit's current is proportional to sin
(2 ν t).  Examining the graph of these two
functions (the current is shown in Figure 17.29
and the voltage shown in Figure 17.30) allows us
to conclude that in this situation the voltage
across the inductor leads the current through the
inductor (i.e., the circuit's current) by /2
radians.

Note:  This /2 phase shift exists ONLY if
there is no resistor-like resistance in the circuit.
As there will never be a case in which there is
absolutely no resistor-like resistance in a circuit,
the phase shift in a real AC circuit will never be
/2.  Calculating the real shift is something you
will run into later.
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FIGURE 17.31
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I.)  Transformers:

1.)  Consider the iron yoke
(the doughnut-shaped structure)
in Figure 17.31.

a.)  The primary cir-
cuit is comprised of a
switch and power supply
connected to a coil whose
winds are wrapped
around the yoke.  The
secondary circuit is
comprised of a gal-
vanometer connected to a
secondary coil the winds
of which are also wrapped around the yoke.

b.)  At t = 0, the switch is closed.  Current establishes itself in the
primary circuit, building slowly due to the presence of the coil.

Note:  Why does the current increase slowly?  You should know from the last
section!  If you do not, read on:

Initially there is no magnetic flux through the primary coil as there is no
current (the switch is initially open).  When the switch is closed, the current in the
primary coil begins to increase.  In doing so, a magnetic field down the primary
coil's axis appears which produces a magnetic flux through the primary coil's face.
According to Faraday's Law, this generates an induced EMF in the primary coil
which opposes the increasing flux through the primary coil.  As the flux-producing
magnetic field is generated by
the current in the primary
circuit, this back-EMF
effectively fights that current.
That is why the primary
circuit's current grows slowly.

c.)  The yoke is made
of iron.  As the current
increases in the primary
circuit (see Figure 7.32),
the primary coil's
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FIGURE 17.33
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magnetic field magnetizes the yoke.  Being one piece, this magnetic field
sets itself up throughout the yoke and passes through the face of the
secondary coil.

d.)  Because the magnetic field through the secondary coil is changing,
an induced EMF will be set up in the secondary coil to oppose the changing
flux.  As such, current will flow in the secondary circuit.  THIS CURRENT
FLOW WILL CONTINUE ONLY AS LONG AS THE MAGNETIC FLUX
CHANGES IN THE SECONDARY COIL.  During that time, the
galvanometer will register charge flow.

e.)  Once the current in the primary coil has built to steady-state, there
will be a magnetic field in the yoke and the secondary coil, but there will not be
a CHANGING magnetic field.  As such, there will be no induced EMF in the
secondary coil and the galvanometer will read zero for that part of the system.

f.)  If, after a time, the switch in the primary circuit is opened, the exact
opposite scenario will occur.  The current in the primary circuit will decrease
relatively slowly, decreasing the magnetic field through the primary coil.
The diminishing magnetic field through the primary coil will diminish the
magnetic field setup in the yoke which, in turn, will diminish the magnetic
flux through the secondary coil.  The secondary coil will respond by
producing an induced EMF to oppose the change of flux through its face,
generating a current in the
secondary circuit for as long as
the changing magnetic field
exists.

A graph of the current in the
secondary circuit as a function
of time is shown in Figure 17.33.

2.)  This device is called a
transformer.  It allows us to transfer
power from one electrical circuit (the
primary) to another electrical circuit
(the secondary) without electrically
connecting the two.  It is not particularly useful in DC circuits where the only
change in current occurs when a switch is opened or closed, but it is very useful in
AC circuits.
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FIGURE 17.34

circuit symbol for
   a transformer

3.)  The symbol for a transformer in a circuit is
shown in Figure 17.34.  The symbol is supposed to
represent two coils connected by a common magnetic flux.

J.)  Transformers and AC Circuits:

1.)    In a DC circuit, the power source supplies a
terminal voltage which sets up a constant electric field.
Free charge carriers in the circuit all respond to that field
by moving in one direction only.

In an AC circuit, the power source supplies an

V(t)

primary circuit
secondary circuit

AC ammeter

A

B-field lines
  alternate
      with time

FIGURE 17.35

alternating terminal voltage that sets up an electric field that changes both in
magnitude and direction.  Free charge carriers in an AC circuit respond to this
alternating field by jiggling back and forth.

2.)  With this in mind,
consider what happens when
an AC power supply is put in
place of the DC power supply
originally used in the trans-
former's primary circuit (see
Figure 17.35).

a.)  As stated
above, the current in
the primary circuit will
be constantly changing
in direction and
magnitude.

b.)  A constantly changing, alternating current will produce a constantly
changing, alternating magnetic field in the yoke.  This, in turn, will produce
a constantly changing, alternating magnetic flux through the secondary coil.

c.)  An alternating magnetic flux through the secondary coil will produce
an alternating induced EMF across the secondary coil's terminals which, in
turn, will produce an induced alternating current in the secondary circuit.

d.)  Bottom line:  A transformer is useful if one wants to transfer AC
power from one circuit to another without electrically hooking the two
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circuits together.  As the current in the secondary coil is constantly varying,
power in such circuits is transferred continuously.

Note:  Putting an AC power source in place of the DC source in Figure 17.35
will additionally require changing the current-measuring device in the secondary
circuit.  Galvanometers are DC ammeters; we would need an AC ammeter.

3.)  Transformers do more than just transfer power from one part of a circuit
to another.

a.)  To see this, assume ε p is the induced EMF across an ideal

transformer's primary circuit at a given instant, ip is the induced current

through the primary circuit at that same instant and assume 100%
efficiency (that is, assume all the power provided by the magnetic
component of the primary coil is transferred to the secondary coil).  From
this, we can model the power transfer as:

Pp = Ps
         ipεp = isεs.

b.)  We know that ε  = -N ( ∆φ m)/( ∆ t), and we know that the change in

flux ∆φ m/ ∆ t through the primary and secondary coils will be the same

(both coils have the same face-area and the same magnetic field passing
through them).  With this information we can write:

ipεp = isεs

  
  
ip −Np

∆Φ

∆t















 = is −Ns

∆Φ

∆t















.

After canceling out the ∆φ / ∆ t variables on both sides of the equal sign and
manipulating, we get:

          Np / Ns= is / ip.

Important Note 1:  The turns-ratio Np/Ns is inversely proportional to the ratio of

currents in the primary and secondary coils.
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c.)  Going back to the power relationship, we know that:

ipεp = isεs
   ⇒      is/ip = εp / εs.

Substituting this into our turns relationship

      is / ip = Np / Ns

yields
      Np / Ns = εp / εs.

Important Note 2:  The turns-ratio Np/Ns is directly proportional to the voltage

ratio between the primary and secondary coils.

d.)  Summary:

i.)  When Np> Ns:

      εp > εs  and  ip < is,

where it is still true that Np/Ns = ε p/ ε s and Np/Ns= is/ip.

ii.)  When Np> Ns, we have what is called a step-down transformer

(it is called step down because the voltage decreases as we go from the
primary to the secondary coil).  Notice that with a step-down
transformer, the current in the secondary coil is GREATER than the
current in the primary.

iii.)  When Np< Ns:

              εp < εs  and  ip > is,

where it is still true that Np/Ns = ε p/ ε s and Np/Ns= is/ip.

 iv.)  When Np< Ns, we have what is called a step-up transformer (it

is called step up because the voltage increases as we go from the primary
to the secondary coil).  Notice that with a step-up transformer, the
current in the secondary coil is LESS than the current in the primary.
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rotating
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ELECTRIC POWER PRODUCTION

4.)  Now that you have some idea about how transformers work and what
they do, we can talk briefly about power production.

a.)  Consider a hydroelectric plant.  A waterfall turns a turbine, the
shaft of which is attached to a giant coil.  The coil is suspended in a fixed
magnetic field.  As the coil rotates, AC is produced across its leads.  Sliding
contacts tap the alternating voltage.

b.)  Transport:  Sending the electrical power to the city requires the use
of wires.  The single biggest source of energy loss during this transfer is due
to the heating-up of those wires.  As high currents generate lots of heat, the
trick is to keep the current as low as possible.

i.)  Using a step-up transformer, the voltage is stepped up to, say,
50,000 volts.  This drops the current down quite low for the span be-
tween the power generator and the city.

ii.)  As there are few toasters that can handle 50,000 volts, a step-
down transformer at the city is used to step the voltage down to either
110 or 220 volts AC.

iii.)  This shoots the current capacity skyward.  In that way, power
companies
can
accommodate
hundreds of
thousands of
homes at
once.

c.)  The
entire process is
displayed in
Figure 17.20.
(Oh, look, there
was a Figure
17.20.)
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K.)  Impedance Matching and Transformers:

1.)  There is one more topic of importance, especially to anyone who is
interested in speakers and stereo systems.  It is best introduced with an analogy.

When optical light passes through an interface (i.e., a boundary) between
two media, it will normally experience partial reflection caused by the fact that
the two media have different densities.  The only time a light beam will not reflect
is when it passes into a second medium whose "density environment" is exactly
the same as the first.

2.)  Consider any complex electrical circuit--say, a stereo system connected
to speakers.  If the impedance of the stereo and the impedance of the collective
speakers is the same, the signal will pass from the one to the other just as light
passes through two common-density environments (i.e., there will be no reflection at
the interface between the two systems).  If, on the other hand, the resistive nature of
the circuitry from which the signal comes (i.e., the stereo) is different from the
resistive nature into which the signal must go (i.e., the speakers), reflection will
occur at the interface.  Put another way, maximum power will be transferred from
the stereo to the speakers when the impedance of both is the same.

3.)  The problem frequently confronting circuit designers is the fact that
stereo systems have large impedances whereas speaker circuits have only tiny
impedances.  The question is, "How does one trick the signal into thinking the
circuit it is entering has the same impedance as the circuit it is leaving?"

The answer involves the use of a transformer and is wrapped up in what is
called impedance matching.

4.)  A quick review of transformers:  A transformer is essentially a pair of
coils linked via a common magnetic field and, hence, a common magnetic flux.  The
turns-ratio (Ns/Np) dictates how the secondary voltage and current are related to

the primary voltage and current.  That is:

a.)  Ns/Np = ε s/ε p = ip/is (this is true in all cases).  Additionally;

b.)  If Ns< Np, the secondary voltage is smaller than the primary

voltage ( ε s < ε p) and the transformer is called a step-down transformer.  In

step-down transformers, the current in the secondary is larger than the
current in the primary (i.e., is > ip).
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c.)  If Ns> Np, the secondary voltage is larger than the primary voltage

( ε s > ε p) and the transformer is called a step-up transformer.  In step-up

transformers, the current in the secondary is smaller than the current in the
primary (i.e., is < ip).

5.)  Having so reviewed, consider the following situation.  A 1200 Ω stereo
system (Zst = 1200 Ω) is hooked up to a set of 8 W speakers (Zsp = 8 Ω).  From the

signal's standpoint, how can we use a transformer to make 8 Ω speakers look like
1200 Ω elements?

a.)  The first thing to notice is that as the signal comes into the
transformer, it sees a net impedance (Ztransf.+load) made up of the primary

coil's impedance, the secondary coil's impedance, and the load's impedance
(Zload).  This net impedance is what we want to numerically equal the

stereo's impedance (Zst).  Put another way, the signal sees an entire

package which, if the transformer system has been designed optimally, will
appear to have an impedance of 1200 Ω.

b.)  We know that the primary coil's current ip will be the current

coming from the stereo (i.e., ip = istereo) while the primary coil's voltage is

some value Vp.  From Ohm's Law, the impedance of the stereo circuit (Zst)

will be:

Zst = Vp/ip (= 1200 Ω for our example).

c.)  As the current from the stereo is ip and the impedance of the stereo

is Zst, the energy provided by the stereo to the primary coil will be:

     Pp = ip
2Zst.

d.)  Assuming an ideal transformer, the power provided by the primary
will be completely transferred to the secondary.  That is:

       Pp = Ps.
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e.)  We know that the energy provided to the secondary circuit  (i.e., the
power available to the secondary circuit from the primary coil) will be
dissipated by the load (the speakers).  That is:

       Ps = is
2Zload.

f.)  Equating the power terms yields:

Pp = Ps
                ip

2 Zst = is
2 Zload

           ⇒     Zst = (is
2/ ip

2 ) Zload (Equation A).

g.)  We have already established the relationships that exist between
the secondary and primary currents and the turns-ratio of the transformer.
Specifically, we know that:

                   Np/Ns = is/ip.

h.)  Using this to eliminate the current terms in Equation A leaves us with:

 Zst = (Np
2/ Ns

2 ) Zload.

i.)  What does this relationship mean?  Zst  and Zload are fixed.

Evidently, for the signal to transfer without reflection, the turns-ratio of the
transformer must be such that:

           (Np/ Ns)2 = Zst / Zload.

j.)  Bottom line:  To modify the speaker-load to suit the incoming signal
(i.e., to impedance match), we must use a transformer whose turns-ratio is
such that:

(Np/ Ns)2 = Zst / Zload.

where Zload is the true load resistance (i.e., that of the speakers) and Zst is

the impedance of the signal's source.
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k.)  For our situation, Np/Ns = (1200 Ω/8 Ω)1/2 = 12.24/1.  If the winds

are Np = 1224 and Ns = 100, the signal will see the load as 1200Ω, and no

reflection will occur.
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QUESTIONS & PROBLEMS

17.1)  What is magnetic flux?  How is it defined?  What does it do?

17.2)  A coil is placed in the vicinity of a horseshoe magnet.
a.)  Once in place, is there a flux through the coil?
b.)  Once in place, is there a current in the coil?  If so,

why?  Also, if so, in what direction will the current flow?

17.3)  The coil alluded to in Problem 17.2 is placed in the
vicinity of the same horseshoe magnet, but this time the coil is
rapidly pulled away from the magnet.

a.)  Is there an initial flux through the coil?
b.)  What happens to the flux as the coil is pulled away?
c.)  From the standard perspective associated with magnetic fields and

charges moving in magnetic fields, would you expect a current to flow in the
coil as the coil was pulled away from the magnet?  If so, why?  Also, in what
direction would the current flow?

d.)  From Faraday's perspective, would you expect a current to flow in the
coil as the coil was pulled away from the magnet?  If so, how would Faraday
explain the current?  Also, how would he determine the direction of current
flow?

17.4)  Each of the loops in the figure are
identical.  Each has a length of .2 meters, a
width of .08 meters, and a resistance of 4
ohms.  Each is moving with a velocity
magnitude of .28 m/s, and Loops A, C, and F
each have .05 meters of their lengths not in
the magnetic field at the time shown in the
sketch (that is, the length outside the field at
the time shown is .05 meters for each of
those loops).  The magnetic field in the
shaded region is into the page with a

magnitude of B = 3x10-2 teslas.
a.)  What is the direction of the induced current for each loop at the

instant shown in the sketch?
b.)  What is the induced EMF generated in Loops A, C, and F at the

instant shown?
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c.)  What is the magnitude and direction of the induced magnetic force
felt by Loop F at the instant shown?

d.)  What is the direction of the induced magnetic force on Loops A, C, and
D at the instant shown?

17.5)  Two coils share a common axis but are electrically
isolated from one another (that is, they aren't electrically
connected).  The coil on the left is attached to a variable
power supply (we'll call this the primary circuit).  The coil on
the right is attached
only to a resistor and an
ammeter (we'll call this
the secondary circuit).
One of the more
hyperactive students in
the crowd begins to play
with the voltage across
the primary coil power
supply while a second
student records, then
graphs the current in
the SECONDARY coil.
That graph is shown in
the sketch.  There are
six time intervals identified by letters on the graph (i.e., A corresponds to the
current during the period between t = 0 and t = 2.2 seconds, etc.).  Explain what
must be happening to the power supply in the primary circuit during each of those
time periods.

17.6)  The magnetic
field down the axis of a
coil varies with time as
graphed to the right.  On
the graph, sketch the
induced EMF set up in
the coil.
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FIGURE III
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17.7 If the graph in Problem 17.6 had been of the EMF set up in the coil as a
function of time, what could you say about the magnetic flux through the coil?

17.8)  A 6-turn circular coil whose radius is .03 meters and whose net
resistance is 12 Ω 's is placed squarely (that is, A and B are parallel to one
another) in a magnetic field whose direction is out of the page and whose
magnitude is 2.3 teslas.

a.)  What is the coil's initial magnetic flux?
b.)  If the field increases at a rate of .6 teslas per second, what is the

magnitude and direction of the induced current in the coil?
c.)  Go back to the original situation.  The coil is made to rotate about its

vertical axis at an angular frequency of w = 55 radians per second.  That means
the induced EMF is AC.

i.)  What is the frequency of the AC current generated?
ii.)  Determine an expression for the induced EMF in the circuit.

17.9)   For the RL circuit shown in Figure III, the
inductance is 1.5 henrys and the inductor's internal
resistance is 6 ohms.  A current of 2.5 amps has been
flowing in the circuit for a long time.  At t = 0, the power is
switched off and the current begins to die.

a.)  What is the voltage across the inductor
BEFORE t = 0?

b.)  After .05 seconds, the current has dropped to
approximately one-third of its original value.
Determine the resistance of the resistor R.  (Hint: think
about the time constant of an RL circuit and what it
tells you).

c.)  How much POWER does the inductor provide to the circuit over the
.05 second time period alluded to in Part b?  (Hint:  Think about  the definition
of power and what you know about stored energy in a current-carrying
inductor).

d.)  The power given up by the inductor: where did it go?

17.10)  A rectangular coil of area Ao  has N turns in it.  It

is rotated in a time-varying magnetic field (see Figure V)

equal to Boe-kt, where k is a constant and Bo is the

amplitude of the magnetic field.  Assuming the frequency of
the rotation is n:
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a.)  Determine the EMF in the coil as a function of time, and;
b.)  At what point in time will the magnitude of the EMF be at

maximum?

17.11)  A fixed circular coil of radius R is placed in a

magnetic field that varies as 12t3- 4.5t2.  If the coil has N
winds and A is defined out of the page (i.e., in the +k-direction):

a.)  Is B into or out of the page at t = .2 seconds?
b.)  Derive a general expression for the magnetic flux

through the coil.
c.)  What is the general expression for the induced

EMF in the coil?
d.)  Determine the two points in time when the

induced EMF is zero.
e.)  What is the direction of the current flow:

i.)  Just before t = .25 seconds?
ii.)  Just after t = .25 seconds?

f.)  Derive the general expression for the induced electric field setup in
the coil.

g.)  An electron is placed at R/2 in the field.  Derive an expression for its
acceleration at time t = 3.3 seconds.  For this, assume N = 15 and R = .2
meters.

17.12)  The transformer shown in Figure VIII has
1200 winds in its primary coil and 25 winds in its
secondary.  The resistance in its primary is 80 Ω 's, the
resistance in its secondary is 3 Ω 's, and the primary's
inductance is Lp = 10 mH.  A 110 volt DC power supply

is hooked into the primary providing an 8.25 amp
current to the system.  The switch has been closed for a
long time.  When the switch is opened, the current
drops to zero in .04 seconds.

a.)  What is the induced EMF across the primary before the switch is
opened?

b.)  What is the induced EMF across the primary during the current
change?

c.)  What is the current in the primary during the current change (i.e.,
after the switch is opened)?

d.)  What is the current in the secondary before the switch is opened?
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e.)  What is the current in the secondary after the switch is opened and
DURING the current change?

f.)  Is this a step-up or step-down transformer?

17.13)  An AC source is attached to a coil that has a vertical,
steel bar down its axis.  When the power is turned on, an
alternating magnetic field is set up along the axis of the bar.  An
aluminum plate is centered over the bar at its upper end.  When
power is provided to the coil, the plate levitates.

a.)  Is aluminum a magnetizable material?
b.)  Why does the plate levitate?
c.)  An egg is broken onto the plate.  What will happen

to the egg . . . and why?

17.14)  What is inductance?  How is it comparable to resistance and
capacitance?

17.15)  How do transformers work?

17.16)  You have just built from scratch a stereo system.  You have 8 ohm
speakers you would like to plug into the system, but as it stands the system's
unrestricted output impedance is 60 ohms.  Assuming you don't want to
completely redesign the entire system, what would you have to do so that your set-
up could run the 8 ohm speakers without power loss?  Be specific and include
numbers where applicable.
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